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1. The Problem Statement 

A Fabrication company operates a diamond-tipped milling machine, where failures in the 

milling process can occur via five primary mechanisms. When a failure happens, it can cause 

damage to the current workpiece within the machine, resulting in both material waste and 

additional loss due to downtime to reset and replace damaged materials and tooling. 

The goal of this study is to predict the need for maintenance ahead of operation, specifically in 

the form of tool tip replacements, to avoid these losses. Currently, tool tips are replaced at 

random intervals between 200-240 minutes of accumulated usage, which may not align with 

actual wear and tear or failure risk. Instead, we propose the use of a supervised offline 

classification model to predict the onset of failure. Using historical environmental and 

operational data from previous run instances, along with data on prior failures if occurred, the 

aim of the model will be to predict whether the tool tip will fail under upcoming operational 

conditions.  

Because the material loss and downtime from an unexpected tool tip failure are more costly 

than the tool tip, our primary success metric will be to focus on maximising the detection of 

likely failures, with scheduled tool tip replacement we see 3.49% of projects experiencing an 

interruption due to unexpected tool tip failure or scheduled replacement. A secondary goal is 

to minimise false failure predictions to reduce unnecessary replacements, as we have no 

measure of false failure predictions from this dataset to improve upon we will instead aim to 

train a model to make false failure predictions at or less than the tool tip replacement rate, 

determined from the raw dataset to be 0.4% of instances.  

2. Data Description 

This report in-part presents a detailed analysis of the dataset structured for predictive 

maintenance applications, aiming to explore machine learning models' capabilities in 

predicting failures across various process and quality parameters. Key attributes and 

descriptions of the dataset: 

• (1) Unique Identifier (UDI): Sequential ID for each entry, ranging from 1 to 10,000. 

• (2) Product ID and (3) Type: Each product is labelled as low (L), medium (M), or 

high (H) quality. Low quality (50%) is most frequent, followed by medium (30%) and 

high (20%), each accompanied by a variant-specific serial number. 

• Environmental and Process Conditions: 

o (4) Air Temperature 

o (5) Process Temperature 

o (6) Rotational Speed and (7) Torque 

• (8) Tool Wear and Durability: Based on quality type (H, M, L), tool wear time adds 

5, 3, or 2 minutes respectively, representing the tool's effective usage time in the 

production process. 

• (9) Machine Failure Label: This binary indicator is triggered by any of five failure 

modes: tool wear failure, heat dissipation failure, power failure, overstrain, or random 

failure. Each failure mode has specific parameters: 
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o (10) Tool Wear Failure (TWF): Randomly replaced tooltip between 200-240 

minutes of tool use, with 69 instances of replacement. 

o (11) Heat Dissipation Failure (HDF): Triggered if the difference between air 

and process temperature is below 8.6 K and rotational speed is under 1380 rpm, 

with 115 recorded instances. 

o (12) Power Failure (PWF): Defined by torque and rotational speed producing 

power outside the range 3500-9000 W, observed 95 times. 

o (13) Overstrain Failure (OSF): Caused if the product of tool wear and torque 

exceeds limits set by product type, totalling 98 instances. 

o (14) Random Failures (RNF): A 0.1% chance of failure per data point, with 5 

cases recorded. 

This dataset is derived from the following publication: Matzka, S. (2020). "Explainable 

Artificial Intelligence for Predictive Maintenance Applications," 2020 Third International 

Conference on Artificial Intelligence for Industries (AI4I), pp. 69-74. 

2.1. Exclusion of Unpredictable Outcomes 

Random failures (RNF) and scheduled tool changes (TWF) are considered inherently 

unpredictable and thus are excluded from the predictive modelling goals. These events do not 

correlate with observable process conditions and therefore cannot contribute meaningfully to 

model training or predictive accuracy in maintenance applications but rather have the potential 

to hinder training. 

2.2. Assumptions 

Each row of data represents a single milling project state space and failure outcome, with no 

temporal sequencing between instances. 

3. Data-set Pre-Processing 

The dataset is modified to consolidate individual failure columns under a unified "Machine 

Failure" column, with specific integer values assigned to each type of failure – Label Encoded 

with the respective column names.  

As indicated in the prior section, the TWF and RNF positive rows are removed from the data 

set reducing the dataset column length from 14 to 12. Additionally, rows indicating multiple 

failure modes are removed due to the intractability of assigning a single root cause of failure.  

Furthermore, eliminating rows associated with random or scheduled failure modes (RNF & 

TWF respectively) results in an alteration in the quantitative business metrics as the total 

number of instances are reduced from 10,000 to 9,916. Our business objectives are altered due 

to this. We will maintain our goal to improve and meet the false failure rate to <=0.4%. The 

primary goal to reduce occurrence of failures by prediction driven proactive maintenance; with 

the elimination of TWF and RNF failure modes eliminated is recalculated at <2.70% of 

instances.  
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4. Train & Test sets 

Before conducting exploratory data analysis (EDA), the dataset is split into a target variable 

stratified 80:20 ratio. The larger portion (80%) is used for EDA, model training, and validation, 

while the remaining 20% is reserved as an isolated test set for the final model. This isolated 

data will represent unseen real-world data. 

The training set is formed of 7,932 rows. The train and test sets are stratified across class 

outcomes. This is reproducible and deterministic, as we used a fixed random_state value of 

38513497 (ChemDig) in the train_test_split function, allowing for reruns of the code without 

concern for data leakage between the test set and training set. 

This methodology ensures that the evaluation of the final tuned model on the test set is 

unbiased, as neither the machine learning models, nor the analyst has prior exposure to this 

data subset. This provides a realistic assessment of model performance on unseen data. 

5. Exploratory Data Analysis 

5.1. Assessment of Raw Data 

Following the consolidation of failure columns to the “Machine failure” column, the failure-

mode specific Machine failure label columns are temporarily (for EDA) dropped from the 

database. Further to this the “UDI” column is removed as it serves no contribution to the data 

patterns, it is an indexing column. Reducing the column count from 12 to 11.  

The data set is complete, with no missing values or duplicate rows in any of the 11 columns, 

Figure 1 shows the dataset prior the machine failure column addition and UDI removal. 

 

Figure 1 - Dataset information pre- label encoding of target variables – No missing data  
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Before conducting data analysis, it would be beneficial to transform the object data type 

columns into numeric format. 

As the 'Type' column contains the strings 'L', 'M', and 'H', which refer to a hierarchical system, 

we can confidently map these values to [0, 1, 2] respectively. 

The 'Product ID' column uses a regex pattern where the first letter represents the quality of the 

tool, which is synonymous with the 'Type' column data. This is followed by a serial number 

for the product. We will drop the letter, as it is already captured in the 'Type' column, and retain 

the serial number, as it may prove useful for prediction. 

The data set target columns are unbalanced with only 2.7% of the data reflecting failures, 

this is as expected in industrial data, we will not typically observe a successful company with 

substantial failure data.  

Table 1 - Unbalanced dataset, failure outcome targets variable distribution. 

Machine failure 

 

Count Contribution% 

No Failure 7721 97.34 

HDF 85 1.07 

PWF 64 0.81 

OSF 62 0.78 

 

5.2. Outlier handling 

Failure data is scarce; to retain as much of the failure data as possible, we will opt for a less 

severe outlier test—Z-Score analysis. Although IQR was performed, it highlighted many more 

points related to failure instances at the boundaries of the data distributions. 
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The plot above shows the outliers in the feature space data, where the threshold for outlier 

classification is a modulus Z-score value of 3 or greater. Of these, 89 are non-failure, and 37 

are machine failure PWF; 55% of PWF failures are identified as outlier data. The outliers for 

these rows are found under the Rotational Speed and Torque columns. To preserve these limited 

instances, the outlier data will be clipped to the column's minimum, mean, or maximum value, 

depending on which value the outlier is closest to. 

The plot titles include the transformations applied to each distribution to reduce the skew and 

normalise the data for accurate Z-score analysis. These transformations are retained in the 

dataset, as the reduction of skew normalises the distributions, which is required for many of 

the algorithms applied going forward. 

 

Figure 2 - Outlier detection, Z-Score analysis, with titled transformations applied. Outliers in both 

Rotational speed & Torque distributions indicated by orange colouring.  



Page 6 of 25 

 

 

Figure 3 - Outliers clipped to nearest min, max, mean value of column. And skew reduced to acceptable levels.  

 

The application of transformations has improved the skew of the plots, most dramatically with 

the rotational speed. This is a combination of the transformation and the clipping of outliers—

the latter can be seen in the far-right bin of the rotational speed plot, which now contains many 

of the original outliers that were previously in the training tail. Similarly, the torque outliers 

have been clipped to their nearest min/max/mean, flattening the histogram. The following 

description of the data provides the distributions of the data post outlier handling and 

transformations; all features fall within the expected ranges.   
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5.3. Feature relationships 

With the data processed for missing values, outliers and skew we will now explore the 

multivariate relationships. The following pair plot present the features with failure mode 

colouring (see key), non-failure instances are removed as the number of datapoints obfuscate 

the minority failures underlying pattern.  

Notable patterns identified: 

• Clustering of failure modes: There is clear clustering with well-defined boundaries 

between failure modes throughout the feature space, which is a positive sign for 

successful classification. This clustering is particularly noticeable in the Tool Wear and 

Torque rows of the pair plot. 

• Correlation between temperatures: Process temperature and air temperature are 

correlated, which could introduce multicollinearity and negatively affect the accuracy 

or performance of algorithms. It may be advisable to remove one of the two correlated 

features or combine them into a new feature. When plotted against each other, the two 

features clearly separate HDF failures from the other two failure modes. 

• Product ID and failure mode correlation: There appears to be a correlation between 

higher Product ID values and an increase in OSF failures, which also correlates with 

products of type L (converted to value 0 in the earlier data manipulation). 

 

 

 

Figure 4 - Sample of feature space data post-outlier removal. 
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Figure 5 - Pair plot of feature space interaction, demonstrating clustering nature of future space with target failure 

highlighting. 

The heatmap below shows the bivariate Pearson correlation of the features, confirming patterns 

observed in the pair plot. 

• Type and Product ID correlation: Unsurprisingly, Type and Product ID are highly 

correlated, a score of 0.81. Product ID is a numeric serial number that is variant (Type)-

specific. The key difference is that Type is categorical, while Product ID is continuous 

data with a greater range, potentially capturing more nuanced relationships between the 

exact product and the failure modes. 

• Process and air temperature correlation: Process and air temperature are highly 

correlated with a score of 0.88. 

• Torque and rotational speed correlation: Torque and rotational speed are also highly 

correlated, with a score of 0.91. 

• Non-correlation of remaining features: The remaining features are effectively non-

correlated, with the maximum correlation score being that of 0.062 between Product ID 

and Process Temperature. The low feature-feature correlations are ideal data for 

proceeding with classification model training. 
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Figure 6 - Feature space correlation matrix – multicollinearity indicated by values closer to 1. 

5.4. Feature Engineering 

There is opportunity to combine the highly correlated components identified in the heat map 

via domain knowledge feature engineering.  

Physical relationships: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑇𝑜𝑟𝑞𝑢𝑒 =
𝑇𝑜𝑟𝑞𝑢𝑒(𝑁𝑚)

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑 (𝑟𝑝𝑚)
 

𝑃𝑜𝑤𝑒𝑟 = 𝑇𝑜𝑟𝑞𝑢𝑒(𝑁𝑚) ∗ 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑 (𝑟𝑝𝑚) 

Thermal features 

∆𝑇 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑇𝑒𝑚𝑝. (𝐾) − 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝. (𝐾) 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑇𝑒𝑚𝑝 =
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑇𝑒𝑚𝑝. (𝐾)

𝐴𝑖𝑟 𝑇𝑒𝑚𝑝. (𝐾)
 

The heatmap below shows the Pearson correlations, including the domain-engineered features. 

As expected, there is a correlation between the foundational features and those derived. The 

red dotted lined box indicates the boundary between original features and new feature 

correlations.

 

Figure 7- Domain expansion feature space correlation matrix– multicollinearity indicated by values closer to 1. 

 

Mutual information— a feature importance test—treats outcomes as nominal categories. Here, 

we employ this test to evaluate which features provide the most information gain in predicting 

the outcome. Due to the unbalanced data, with the majority being non-failure, non-failure 

instances have been removed from evaluation, like with the pair plots above to provide a clear 

indication of failure modes in relation to the feature space. 
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Figure 8 - Mutual Information ranked feature space; higher value indicates greater feature contribution to target prediction. 

From the figure we can see the descending rank of feature importance revealed via mutual 

information assessment. Although this graphic indicates poor feature contribution from 

Rotational speed [rpm], Air temperature [K], Process temperature [K] and Type – our feature 

space is small, having only 11 components. It would be prudent to retain as much information 

as possible at this stage and instead handle feature reduction as a ‘hyperparameter’ of model 

training. 

Although not employed in this report, there is opportunity to expand the feature space with 

methods such as polynomial features and radial basis function and subsequently reduce the 

dimension of the data feature space via methods such as PCA, UMAP or t-SNE to capture 

patterns and eliminate multicollinearity. As well, feature selection could be applied when 

dealing with larger sets of features to reduce the number of features to those most influential 

upon outcome, such as ranked methods as that above (Mutual information) or exploitation of 

feature importance parameters gained from coarse trained decision trees. Although not 

employed here, an example of a plausible automated workflow for feature selection combining 

Pearsons and mutual information is given below; where persons correlation assesses whether 
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collinearity exists between features (Value>0.9) and Mutual Information determines the 

features importance in gaining information towards a target failure mode value.  

 

1. Evaluate features via Pearsons’s correlation (PC) assessment, setting diagonal to 0. 

2. Evaluate mutual information (MI) of each feature.  

3. For each feature in order of least to most important, evaluated from MI. 

a. If the feature’s PC column or row has a correlation > 0.9 – remove feature 

i. Restart from step 1 

b. Else proceed to next least important feature, until end of list.  

 

The final step of the EDA is the scaling of the data, here we apply a Min-Max Scaler, the 

complete data processing pipeline is as follows, note many of the pipeline transforms are 

custom functions – the transformer naming aligns with the operations performed above to assist 

in clarity of their role in the data manipulation. 

df_target_preprocessing = Pipeline([('Intractable_Machine_Failure_Highlight', 

HighlightingIntractableMachineFailures()), 

                        ('Drop_Columns', ColumnDropper(['TWF','RNF'])),  

                        ('Drop_intractable_failure_rows', NanRowDropper()), 

                        ('Drop_Machine_Failure_column',                     

ColumnDropper(['Machine failure'])), 

                                    ]) 

preprocessing = Pipeline([ 

    ('Type_Mapping', MappingTypeTransformer()), 

    ('ProductID_Numeric_Extraction', NumericExtractionProductIDTransformer()), 

    ('Domain_Feature_Engineering', DomainFeatureAdditionTransformer()), 

    ('Drop_Columns', ColumnDropper(['UDI'])), 

    ('Imputer', PandasSimpleImputer()), 

    ('Outlier_Detecton_and_tranformation', OutlierTransformer(method='zscore', 

threshold=3)), 

    ('Skew_correction', SkewnessTransformer()), 

    ('Scaler', MinMaxScaler())]) 

 

Within this pipeline we generate the above new domain features and then apply outlier 

detection wide – It would be prudent to investigate the newly generated domain feature 

distributions as we did with the original feature space, but here we assumed investigation of 

the original feature space was sufficient as the domain features are parent to their creation. 

The dataset, information shown below, is now cleaned, transformed and prepared via the above 

pipeline for modelling. The label encoded ‘Machine failure’ column is not present as the format 

is string which is not a data type captured in the data frame quantitative description. 
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Figure 9 - Description of features post EDA-database. 
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6. Preliminary Model Evaluation  

In this section of the report the cleaned data prepared in the earlier chapter will be used to train 

three classification models, Logistic Regression, SVM and Random Forest (An ensemble of 

decision trees) with default hyperparameter settings. The algorithm training metrics are as 

follows, as aligned with the business objectives detailed in the problem statement. 

1. Primary Objective: Prevent failures, achieved by Maximising Recall: True Positives 

/ (True Positives + False Negatives) – Dataset comparative business statistic; 2.7% of 

instances resulted in failure.  

2. Secondary Objective: Reduce unnecessary maintenance/tool change, achieved by 

Maximising Precision:  True Positives / (True Positives + False Positives). – Dataset 

comparative business statistic; 0.4% of tooltips replaced.  

Where a True Positive is a correctly predicted failure; a False Negative is an incorrectly 

predicted non-failure; and a False Positive is an incorrectly predicated failure.  

A 5-fold stratified split of the data is performed, and the cross-validation results of the model 

are assessed against each of the respective folds validation set. An average is taken across the 

folds to obtain the precision, recall and f1-score for each failure mode. A confusion matrix is 

presented to showcase the combined spectrum of prediction and actual values across the 

validation of the fitted models on the 5-folds.    

Accuracy is a measure of correct values, which is a poor metric to observe for progression of 

our models as the minority failures do not equally influence this value, instead the majority 

non-failure outcome mostly determines this figure. The macro avg is the average of the column 

metrics weighting the contributions from target variable outcomes equally, whereas the 

weighted avg is the average with weighting relative to support of the outcome class.  

 

6.1. Logistic Regression  

Table 2- Logistic Regression 5-fold validation metrics 

 
precision recall f1-score support 

No Failure 0.98 1.00 0.99 7721 

HDF 0.59 0.12 0.20 85 

PWF 0.00 0.00 0.00 64 

OSF 0.78 0.11 0.20 62 

     

accuracy 
  

0.98 7932 

macro avg 0.59 0.31 0.35 7932 

weighted avg 0.96 0.98 0.97 7932 

 

1. The recall is near-perfect for capturing non-failure’s however ranges from 0-0.12 for 

failure mode instances – a poor performance overall. 

2. Precision is improved in comparison to recall with no-failure, HDF & OSF exhibiting 

reasonable values of 0.98, 0.59 & 0.78 respectively. However, the precision value of 

0.00 for PWF is poor.  
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From a review of the confusion matrix, the model seems to default predicting non-failure. This 

is likely due to the model being unable to adjust to the imbalance of the target data leaning 

heavily towards non-failure outcome, with default hyperparameters.  

 

6.2. SVC 

Table 3 - SVC 5-fold validation metrics 

 
precision recall f1-score support 

No Failure 0.98 1.00 0.99 7721 

HDF 0.67 0.05 0.09 85 

PWF 0.00 0.00 0.00 64 

OSF 1.00 0.29 0.45 62 

     

accuracy 
  

0.98 7932 

macro avg 0.66 0.33 0.38 7932 

weighted avg 0.97 0.98 0.97 7932 

 

1. Performance is poor on recall, however, shows an improvement in OSF recall compared 

to Logistic Regression. 

2. SVC improved precision when compared to Logistic Regression across the classes; 

however, remaining ineffective for PWF prediction.   

 

 

 

Figure 10 - Confusion matrix LR 
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SVC is better at predicting OSF but does not consider HDF or PWF for any predictions across 

the validation set bar one instance of class HDF. Instead opting to predict the majority class 

(no failure). This, like Logistic Regression could be due to the imbalance in the data set heavily 

weighting the model to place importance on predicting the majority no failure class. The 

comparative improved capability to predict OSF does result in a model which has higher 

accuracy, but this is marginal. 

 

6.3. Random Forest 

Table 4 - Random Forest classifier 5-fold validation metrics 

 
precision recall f1-score support 

No Failure 0.99 1.00 1.00 7721 

HDF 0.96 0.95 0.96 85 

PWF 0.97 0.97 0.97 64 

OSF 1.00 0.47 0.64 62 

     

accuracy 
  

0.99 7932 

macro avg 0.98 0.85 0.88 7932 

weighted avg 0.99 0.99 0.99 7932 

 

1. A wide range of recall values, scores from 0.47 to 1.00.  Prediction of OSF is weakest; 

all models seem to conflate OSF with no failure to some degree.  

2. Precision is near-perfect; less than 0.1% of instances of incorrectly predicting a failure 

from the 7935 instances in the data set. 

 

 

Figure 11 - Confusion matrix SVC 
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The diagonal of the Random Forest Classifier confusion matrix is dense, the predictive 

capability of this model is significant – this is to be expected as an ensemble method composed 

of 100 decision Trees its relative performance will be greater than the LR and SVC models 

above. The percentage of predicted failures in the validation dataset is 2.2%, 0.06% of the 

instances are false positives for failure prediction, the precision is great at a value of 0.97. 

 

The tool-changes due to incorrect failure predictions are as low as 0.06% of instances, which 

with this preliminary model is already over a 6-fold improvement upon the business metric of 

0.4%, the reduction of unnecessary tool changes. 

The number of failures missed by this predictive model equate to 39 instances, with 171 failures 

correctly predicted – the recall is 0.85. 19% of failures are not predicted, the majority are failure 

mode OSF.   

 

Only 0.5% of failures are not predicted, this predictive model could serve over a 5-fold 

reduction in failures compared to the 2.7% business metric achieved from the scheduled 

approach. 

 

6.4. Review of preliminary models 

The three models evaluated without hyperparameter tuning were Logistic Regression (LR), 

SVC and Random Forest (RF). Although benefiting from being highly interpretable, the LR 

and SVC proved incapable of distinguishing failures from non-failures, this is likely due to 

both (i) the imbalance of the data set, and (ii) the linear nature of these approaches – whereas 

RF is inherently capable of linear and non-linear trend identification and capture. Whilst 

weighting of the dataset and/or SMOTE or other sampling technique could address issue (i); 

Figure 12 - Confusion matrix RF 



Page 18 of 25 

 

and further, employment of the kernel trick, either RBF or Polynomial could address the latter 

issue (ii); the random forest classifier solve time was instantaneous and without modification 

managed to produce results of significant improvement in comparison – capturing majority of 

the failures, and reducing failures by prediction by 77% compared to the scheduled tool-tip 

replacement technique employed prior.  

Hence the model selected for fine tuning, at the expense of model interpretability, in the next 

section is Random Forest as it inherently handles the non-linearity of feature to target 

relationships present in this dataset. In the following section we will focus on regularisation of 

the model – overfitting could be a reason to the model’s weak performance when predicting 

>50% of OSF incorrectly – the focus of the tuning is to improve the OSF predictions.  

7. Fine-Tuning  

Although the preliminary random forest model is sufficient in improving upon the scheduled 

approach to tool tip replacement. There is concern for the model’s ability to correctly predict 

OSF failures which is only correct in <47% of the validation instances. Hence, we will be 

performing fine tuning of the model in aim of refining the tools capability regarding all failure 

modes but primarily driven by this poor performance in OSF prediction represented prior.  

7.1. Overfitting assessment 

We will evaluate the preliminary random forest model’s performance on the training set data 

and compare it to the validation data results to determine whether the model is overfitting. The 

confusion matrix results are presented below as percentages of the total instances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 13 - Percentile confusion matrix - training data. 
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The trained classifier performs perfectly on the training data, a score of 1.0 for precision and 

1.0 for recall – indicating overfitting as performance on unseen validation data was 

significantly poorer for OSF in comparison. 

Fortunately, the precision of this initial classifier is significantly high, ranging from 96-100% 

per failure outcome. There is potential for improvement of recall and in affect improving OSF 

predictions, through regularisation, at the cost of some precision. Knowledge of the model at 

present being overfit will help guide parameter scope exploration in the next section. 

The overfit random forest model is indicative of a model requiring regularisation, this will be 

achieved by addressing the overfitting via hyperparameter tuning. 

7.2. Hyperparameter Tuning Pipeline 

Fine-tuning of the model hyperparameters is particularly important for attaining a more 

accurate prediction of failure mode OSF, with the present model 53% of OSF failures are not 

predicted.   

Reducing the complexity of the model and thus reduction of the bias towards the training set – 

will result in an increase in the variance, this will improve the model’s aptitude to correctly 

predict values in the non-trained data spaces – the models generalisation.  

Below are the hyperparameter’s of the random forest model and ranges we will explore via 

RandomisedSearchCV – this search algorithm is chosen for its efficiency of exploration 

through large hyperparameter space.  

Table 5 - RandomisedSearchCV distribution ranges. 

Parameter Exploration Space 

n_estimators  50 → 400 

max_depth 1 → 100 

max_features sqrt, log2, None 

max_samples 0.1 → 0.9 

class_weight 𝑁𝑜𝑛𝑒, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 

min_samples_split 2 → 30 

min_samples_leaf 1 → 30 

 

To rank the models, the RandomsedGridSearchCV requires a score to measure and compare 

estimators produced. The score selected here is the F-beta score, an adaptation of the f-score 

with a beta value used to prioritise precision (𝛽 < 1) or recall (𝛽 > 1). We will use the same 

hyperparameter exploration pipeline with RandomisedGridSearchCV and an external loop to 

explore a set of beta values of  𝛽 = 1, 2, 3, 4, 5, 6 & 7; an increased beta value above the value 

of 1 favours improved recall compared to standard f-score, and the expected effect is to see 

improved OSF predictions.  

Within this scorer, the multiclass outcomes are averaged to discount the influence of the 

imbalanced set, to overcome avoid the majority non-failure class overcontributing to the score 

in this unbalanced dataset.  
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The dataset is split by the RandomisedSearchCV via a 3-fold stratification. See the Randomised 

search code and associated pipeline below, where the preprocessing variable is the pipeline 

introduced at the end of the data processing chapter.   

 

 

full_pipeline = Pipeline([('Feature_Processing', preprocessing), 

                          ('Classification_Model', 

RandomForestClassifier(random_state = 38513497, oob_score = True))]) 

 

 

search = RandomizedSearchCV(full_pipeline, param_distributions=distrubutions, 

                                n_iter=100, cv=StratifiedKFold(n_splits=3, 

shuffle=True, random_state=38513497), scoring=scorer, random_state=38513497, 

verbose = 1, n_jobs=-1) 

 

 

For each of the f-score values the search is run for 100 iterations. The recall and precision 

values are derived from the out-of-bag validation, along with the business metrics for 

percentage of tool changes and percentage of missed failures. The results of the beta value runs 

are given below in the plot. The x axis is the Beta value, and the two-y axis represent the 

business goals of this study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 - Business metrics vs F-score Beta value. 

More detailed results including the recall and precision are given in the table below. 

Demonstrating the positive trend between increasing recall and decreasing the frequency of 

non-predicted failures, and positive trend between the precision and decreasing frequency of 

unnecessary tool tip changes.   
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Table 6 - Beta value affect upon business metrics & classification metrics (recall & precision) 

F-Score beta 
value 

Frequency of unnecessary tool-tip 
change % 

Frequency of failures not 
predicted % 

Precisi
on 

Rec
all 

1 0.13 0.49 0.96 0.85 
2 0.80 0.24 0.81 0.92 
3 0.96 0.22 0.79 0.92 
4 0.96 0.22 0.79 0.92 
5 1.50 0.17 0.72 0.93 
6 1.50 0.17 0.72 0.93 
7 1.50 0.17 0.72 0.93 

 

We can see from the figure above, the tool tip (red line) metric has a positive trend, whereas 

the failures not predicted metric has a negative trend with increasing beta value. The business 

metrics are opposing, in that an increase in one inevitably results in a decrease of the other, this 

is a disguised precision/recall trade off.  

As indicated in our problem statement our priority goal is the minimisation of failures below 

the baseline of 2.7%, and secondary to this the minimisation of unnecessary tool tip changes to 

at or below 0.4%. Thus, from this plot we see the beta value of 5 gives us the minimum 

frequency of failures not predicted equal to 0.17%, this comes with the greatest frequency of 

tool tip changes of 1.49%. Any further increases in beta result in the same business metric 

outcomes – as per out of bag metric evaluation.  

 

The tool-changes due to incorrect failure predictions are as frequent as 1.49% of instances, 

which with this hyperparameter tuned model is a 4-fold increase upon the business metric of 

0.4%, unnecessary tool changes. 

 

Only 0.17% of failures are not predicted, this predictive model could serve over a 15-fold 

reduction in failures compared to the 2.7% achieved via the scheduling approach. 

 

The validation set classification matrix for this model is given below, based on out of bag 

(OOB) data, reflecting the above statements regarding business metrics.  
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Figure 15- Tuned model OOB classification matrix 

Compared to prior classification matrices we see a much-improved model, with the recent 

tuning we now only miss 17% of the OSF failures as opposed to the prior 53%. The sparsity 

observed for non-diagonal and non-edge cells of the classification matrix in the prior model is 

now absent, there are mis predicted failures. For instance, 0.032% of failure predictions are for 

HDF, but in fact are failures a result of OSF & PWF. We expect the model to be imperfect as 

we have regularised the model – reducing the overfitting nature of its prior default parameter 

set. The fortunate perspective is that a failure will still be predicted for these 0.032% of 

instances, although not the correct failure, this will still reduce failures at production which is 

our business objective.  

 

The hyperparameters for this optimal run are as follows. 

 

Table 7 - Hyperparameter settings derived for optimal estimator towards minimisation of failures not predicted. 

Parameter Exploration Space Optimal Value resultant from search 

n_estimators  50 → 400 374 

max_depth 1 → 100 58 

max_features sqrt, log2, None 𝑠𝑞𝑟𝑡 

max_samples 0.1 → 0.9 0.973814 

class_weight 𝑁𝑜𝑛𝑒, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 

min_samples_split 2 → 30 2 

min_samples_leaf 1 → 30 15 

 

This model is the final product of this study and will be used in the following section for full 

dataset training and assessment against our isolated test set.  

 



Page 23 of 25 

 

8. Final Model Assessment 

In this section we will first train the hyperparameter tuned model of the full validation set, then 

evaluate the model on the isolated test set from earlier in this report. The classification of this 

run is given below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16  - Final test set evaluation of tuned model. 

 

The tool-changes due to incorrect failure predictions are as frequent as 1.97% of instances, 

which with this hyperparameter tuned model is a 5-fold increase upon the business metric of 

0.4%. 

 

Only 0.11% of failures are not predicted, this predictive model could serve over a 25-fold 

reduction in failures compared to the 2.7% figure reported above. 

 

With this final model, based on the trained and test set evaluated model; for every 1000 

production runs of the milling equipment, with this predictive model guiding tool-tip change, 

20 of 56 tool-tip changes would be unnecessary, however 26 of the total 56 would avoid failures 

– to the extent that only 1 failure per 1000 runs would not be predicted. Although greater in 

number than the scheduled approach, the sacrifice of 56 tool tip changes results in operation 

whereby failure only occurs 1/1000 production runs of the milling tool. A vast improvement 

upon the scheduled approach which 27/1000 failures.  
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9. Conclusion 

 

9.1. Outcome 

Qualitatively, we met our target. We improved the prediction of failures by 27-fold, although 

our secondary objective of minimising unnecessary tool-tips changes was not successful the 

overbearing financial importance of predicting failures over changing tool tips defines this 

model as a significant successor over the prior scheduled approach. 

 

This predictive model can be extended to a secondary application, to help identify safe 

operating regions for tool tips based on their wear state, contributing to asset life optimisation. 

 

9.2. Alternative/Future Exploration 

While further refinement of the current model may require significant effort, there are several 

avenues for potential improvement. Specifically, addressing errors in the current approach 

through boosting methods or alternative strategies could enhance performance. These 

approaches may be iterated and tested throughout the workflow for better outcomes. 

9.2.1. Deployment and Monitoring: 

The next stage for this project would be the development of a basic flowchart for deployment, 

including steps for updates and monitoring model drift. Additionally, estimating potential cost 

savings based on the tool's tip costs (represented by diamonds) would provide useful insights.  

Additionally, given the trends in tooltip and project costs over time, it would be beneficial to 

track their changing relative costs. A transition point may be reached where minimising tool-

tip changes becomes more critical due to rising tool-tip costs and decreasing project material 

expenses. 

9.2.2. Model Refinements and Techniques: 

Several advanced techniques could be applied to further improve predictive capabilities: 

• Recursive Feature Elimination (RFE): This could streamline the model by selecting the 

most relevant features. 

• Dimensionality Reduction: Techniques like PCA or UMAP could be employed to 

simplify the feature space and capture only the most important patterns, removing 

redundancies – although this would result in an uninterruptible model. 

• Hyperparameter Tuning: A more refined search, such as Bayesian Optimisation 

(BOHO) or Hyperband, could replace the current random search for more efficient 

hyperparameter optimisation. 

• Feature Engineering: Additional domain-specific features could be generated to further 

enhance model performance. 
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9.2.3. Model Selection and Ensemble Methods: 

• Outcome Representation: Instead of using the current hierarchical approach, it may be 

beneficial to treat the outcome column as binary (e.g., 0/1) for simplicity. 

• Stacked Estimators: Using multiple trained models as stacked estimators could 

potentially improve overall performance. 

• Boosting Methods: Applying boosting techniques could help address the 

underperformance of certain models, though caution should be taken to avoid overfitting 

and lack of generalisability. 

9.2.4. Alternative Approaches: 

• Anomaly Detection: Rather than identifying failures explicitly, treating the problem as 

anomaly detection could provide a more effective way to spot failures or other issues. 

• Threshold Tuning (PR-AUC): Further tuning of the threshold using metrics like 

Precision-Recall Area Under the Curve (PR-AUC) could enhance model evaluation and 

performance. 

• Alternative Approach (Binary + Multiclass Hybrid): 

Use a two-stage model: 

o Stage 1: Binary classifier to predict failure (0 vs. 1, 2, 3). 

o Stage 2: Multiclass classifier (trained only on failure instances) to predict specific 

failure modes (1 vs. 2 vs. 3). 

The potential advantages of this approach are two-fold, (i) Simplifies the primary 

classification task (failure detection) and, (ii) allows more focused optimisation of specific 

failure mode predictions in Stage 2. 

Further exploration of these techniques, along with a more extensive preliminary study of 

models and grid search, could lead to improvements in predictive capability and overall model 

effectiveness. 


